Example 8.
The Chafee-Infante problem
In the previous example, we considered a boundary value problem for a sim​ple nonlinear differential equation of the second order which was associated with a certain extremum problem and had infinitely many solutions. The Chafee—Infante problem considered below has even more curious properties.
Again we are dealing with the problem of transferring a system from one state into another while minimizing a relatively simple integral functional. We obtain the system of optimality conditions reduced to a boundary value problem with highly extraordinary properties. It may first seem that this problem is rather close to the one considered in the previous example, since it is the homogeneous first boundary value problem for a second-order dif​ferential equation with cubic nonlinearity. However, it turns out that the number of its solutions essentially depends on a parameter in the optimality criterion.
A very complex and interesting bifurcation problem arises, which is a special form of ill-posedness in the sense of Hadamard.
8.1.     PROBLEM FORMULATION

Consider the system described by the Cauchy problem
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(8.1)
The control и = u(t) is assumed to belong to the set U of functions that transfer the system into the zero final state, i.e.,
х() = 0.


(8.2)

We set
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where u and v are positive constant parameters of the problem and x is a solution of problem (8.1) corresponding to the control u.
The following optimal control problem is called the Chafee—Infante problem.
Problem 8. Find a control 
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 minimizing the functional I on U.
This problem is rather close to the problem considered in Example 4. They differ only in the form of the optimality criterion. For this reason, the analysis of Problem 8 is not supposed to be very difficult. However, since the functional I is nonconvex because of a negative term in the integrand, we should expect some obstacles to appear.
Remark 8.1. It is possible to prove that Problem 8 is solvable using the technique described in the previous example. This proof will be omitted to avoid repetition.
8.2.    THE NECESSARY CONDITION FOR AN EXTREMUM
In order to obtain the optimality conditions in the form of the maximum principle, we use the same procedure as in Example 4. Set
H(u,х,p)  =  u p – 2u2 – νx4  + 2 x2.
The optimal control must satisfy the maximum condition
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 (8.3)
where p is a solution of the adjoint equation
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 (8.4)
We have the system (8.1)—(8.4) for the optimal control. Equating to zero the derivative of H with respect to the control, we find the unique singular control
u = p /4. 


 (8.5)
The second derivative of H with respect to the control is negative (being equal to -4). Hence, the control defined by formula (8.5) maximizes H.

Differentiating the state equation with respect to t and taking into ac​count (8.4) and (8.5), we have
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As a result, we obtain the equation
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(8.6)
with the boundary conditions
x(0)=0,
     x(π)=0


(8.7)
The boundary value problem (8.6), (8.7) is called the Chafee—Infante problem.
Conclusion 8.1. The optimal system state is a solution of the Chafee— Infante problem.
Remark 8.2. As in the previous example, after the transformation of the optimality conditions, we have obtained a boundary value problem for a differential equation with cubic nonlinearity. In this case, however, the nonlinear term has the opposite sign and there is an additional linear term (the second term in the left-hand side of the equation). For this reason, we may expect to get essentially different results.
Remark 8.3. In contrast to Example 7, where the nonlinear boundary value problem was a consequence of the isoperimetric condition, the main role in defining the form of the obtained equation in the present example is played by the optimality criterion.
If a solution of problem (8.6), (8.7) is an optimal system state, then, in view of equation (8.1), the optimal control is the derivative of this solution. Thus, to solve the optimization problem, we first have to solve the Chafee-Infante problem and then to determine whether its solutions provide the minimum of the functional I.
8.3.    SOLVABILITY OF 
THE CHAFEE—INFANTE PROBLEM
It is evident that the Chafee—Infante problem has a trivial solution. In order to show that problem (8.6), (8.7) has nontrivial solutions, we will use a certain assertion from the theory of boundary value problems for nonlinear second-order differential equations. Consider the following problem:
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(8.8)
A function у is called a lower solution of (8.7) if
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A function z is called an upper solution of (8.8) if
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Remark 8.4. A solution of problem (8.8) in the usual sense is always a lower and an upper solution at the same time. In this case, all the relations in the above definition hold in the form of equalities. The converse statement is, in general, not true.
Theorem 10. If for a sufficiently smooth function f there exist a lower solution у and an upper solution z of problem (8.8) such that
y(t) ( z(t) , t((0,T),
then this problem has a solution x(t) such that
y(t) ( x(t) ( z(t) ,  t((0,T).
Remark 8.5. Lower and upper solutions provide estimates from below and from above, respectively, for a solution of the boundary value problem (hence the terminology).
We will use Theorem 8 to prove that there exists a nontrivial solution of the Chafee—Infante problem. We introduce the function y(t)=ε sint, where ε  is a positive constant. We have
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For μ > 1 and ε sufficiently small, the right-hand side of the rightmost equal​ity is nonnegative. Then, since у = 0 on the boundaries of the considered domain, it follows that у is a lower solution of problem (8.6), (8.7).

Conclusion 8.2. For ε sufficiently small, the function y(t) = ε sin t is a lower solution of the Chafee-Infante problem.
Let a function z be identically equal to a constant c. Then
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[image: image13.wmf].

/

n

m

³

c


Conclusion 8.3. For с sufficiently large, the function z(t)=с is an upper solution of the Chafee-Infante problem.
Assuming that
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we have y(t) 
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 z(t) for all t. By Theorem 10, problem (8.6), (8.7) has a solution x(t) such that ε sin t 
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 x(t) 
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 с for t((0,π) (see Figure 32).
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Figure 32. The solution of the boundary value problem is between its lower and upper solutions
Conclusion 8.4. The Chafee—Infante problem has a positive solution for every μ > 1 and v > 0.
Remark 8.6. It can be proved that the Chafee—Infante problem has a unique positive solution.
Remark 8.7. If a function x is a solution of the Chafee—Infante prob​lem, then the function y(t)= x(π - t) is also a solution of this problem. Since there is a unique positive solution, new solutions cannot be obtained by any transformation.  Therefore, the solution must be symmetric with respect to the middle of the time interval, i.e.,
х(t) = x(- t).
Remark 8.8. For (
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1, the above arguments are invalid. It can be proved that the Chafee-Infante problem has only a trivial solution if (
[image: image20.wmf]£

1.
Conclusion 8.5. The Chafee—Infante problem has more than one so​lution if  μ>1 and only a trivial solution  if (
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1 .
8.4.    THE SET OF SOLUTIONS OF
THE CHAFEE—INFANTE PROBLEM
As in the previous example, instead of directly solving the problem to find all the solutions, we will seek transformations that take one solution into another. In particular, one of such transformations is obvious: if a function x is a solution of the Chafee-Infante problem, then -x is also a solution of this problem.
Conclusion 8.6. The Chafee-Infante problem has odd number of solutions for any values of its parameters.
Thus, in addition to the trivial solution x0 and a positive solution x+1, whose existence follows from Theorem 10, we have a negative solution x-1= –x+1.
We now consider the equation
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with homogeneous boundary conditions. As follows from the above argu​ments, for 
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 > 4 this problem has a positive solution, which is denoted by y+.
We introduce the function
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For 0 < t < π/2, we have
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Similarly, for  π /2 < t < π we obtain 
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Hence, the function x+2(t) satisfies (8.6), (8.7). Consequently, for μ> 4 the Chafee-Infante problem has at least five solutions: the trivial solu​tion го, the positive solution x+1, the negative solution x-1= –x+1, and two solutions x+2 and x-1, which change their signs only once.
Conclusion 8.7. The Chafee–Infante problem has exactly three solu​tions if 1 < μ < 4 and at least five solutions if μ, > 4.
Similarly, the homogeneous boundary value problem for the equation 
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has a positive solution if μ > 9. Let us denote this solution by z​+. We introduce the function
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For 0 < t < π/3, we have
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Similarly, for π /3 < t < 2 π/3 we obtain
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Finally, if 2π /3 < t < π, then
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Thus, for ( > 9 the problem has two more solutions x+3 and x-3= – x+3  (see Figure 33).
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Figure 33. The solutions of the Chafee–Infante problem for 4 < 
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Remark 8.9. The maximum of the positive solution of the Chafee–Infante problem depends on the parameters μ and v. For this reason, the function graphs shown in Figure 33 are only approximate representations of the corresponding solutions.
Conclusion 8.8. The Chafee–Infante problem has exactly five solutions if 4< 
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 9 and at least seven solutions if (> 9.
In the general case, for ( > k2, the equation
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has a positive solution, which will be denoted by v+. We introduce the function
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Direct verification shows that this function satisfies (8.6), (8.7) and changes its sign (k–1) times.
Conclusion 8.9. The Chafee–Infante problem has (2k–1) solutions for (k –1)2 < 
[image: image37.wmf]£
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 k2 and at least 2k+1 solutions for μ> k2.
Such a striking character of the effect of the coefficient μ of the linear term is curious arid amazing. In this situation, we should concentrate on the dependence of the solution on this parameter.

8.5.    BIFURCATION POINTS
The analysis in the previous section leads us to the following conclusion.
Conclusion 8.10. The number of solutions of the Chafee–Infante problem depends on the parameter (; therefore, the dependence of the solution on this parameter is not continuous.
The dependence of the general behavior of the solution on the positive parameter ( can be described as follows. For small values of this coefficient, the problem has a unique (trivial) solution x0. The initial increase in ( does not affect the solution, which implies that the dependence of the solution on ( is continuous at this stage. When ( achieves the critical value of unity, two more solutions appear (x+1 and x-1), which means that the system properties change discretely at this point. Further increase in ( leads to the gradual changes in the solutions, but their structure remains the same. This goes on until ( achieves the second critical value equal to four. As a result, two new solutions appear (x+2 and x-2). From this point, the dependence of all the nontrivial solutions on у is continuous until ( achieves the value of 9, when two more solutions appear (x+3 and x-3). In the general case, while ( changes within the intervals between k2 and (k + 1)2 for natural k, the number of solutions of the Chafee–Infante problem does not change and their dependence on ( is continuous. But each time ( assumes the values k2, two more solutions appear (x+k and x-k). The value of a problem parameter at which the number of solutions changes is called the bifurcation point.
Conclusion 8.11. The values (k = k, к = 1,2,..., are the bifurcation points of the Cbafee—Infante problem.
The process described above is shown in Figure 34, which is called the bifurcation diagram.
In the diagram, the x-axis is for the numeric parameter /j,, and the y-axis is for the functional space X of solutions of the problem. The bifurcation diagram clearly shows that new solutions emerge from the existing solutions at the bifurcation points. The dependence of each solution on /i is continuous through the entire interval of its existence.
These results are also important for the analysis of the nonstationary Chafee—Infante problem, which includes the nonlinear heat conduction equation
ди     d2u        9i
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Figure 34. The bifurcation diagram for the Chafee—Infante problem
with the boundary conditions
w(0,r) = 0,       ь{ж,т)=О and the initial condition
Obviously, the solutions of the boundary value problem (8.6), (8.7) rep​resent equilibrium states of the nonstationary Chafee—Infante problem. We now arrive at the following conclusion.
Conclusion 8.12. For (k - I)2 < u, < к2, the nonstationary Chafee— Infante problem has exactly 2k — 1 equilibrium states.
Remark 8.10. Certainly not all of these equilibrium states are stable.
Remark 8.11. As in the previous example, the nonstationary problem can be considered as a means of finding nontrivial solutions of the corre​sponding stationary problem.
It is clear that the solution of the Chafee—Infante problem strongly depends on the parameter /j, since a change in the value of /j, may cause a change in the number of solutions. This kind of dependence suggests essential ill-posedness in the sense of Hadamard.
Conclusion 8.13. The Chafee—Infante problem is ill-posed in the sense of Hadamard.

Remark 8.12. Changing the parameter и does not have such a consid​erable effect.
We will not try to find out which solution of the boundary value problem (or, equivalently, the optimality conditions) minimizes the functional. This involves certain technical difficulties and does not lead to any new signif​icant results. Our main purpose in this example is to obtain a boundary value problem which is equivalent to the system of optimality conditions and possesses important and remarkable properties.
Remark 8.13. It is likely that the optimal controls in this case are the derivatives of the positive and negative solutions of the Chafee—Infante boundary value problem. The solutions that change their signs vary at a greater rate (see Figure 33), which implies a relatively large norm of the control and hence relatively large values of the functional. This supposition, however, needs to be thoroughly substantiated.
SUMMARY
The analysis of this example yields the following conclusions.
1.                    The notions of upper and lower solutions can be used in solving bound​ary value problems for nonlinear differential equations.
2.                   If the functional to be minimized is nonconvex, the number of solutions of the system of optimality conditions may depend on a parameter of the problem, which is associated with essential ill-posedness in the sense of Hadamard.
3.                   The number of solutions of the boundary value problem for a nonlinear second-order differential equation may depend on a certain parameter of the problem, which implies the bifurcation of solutions.
4.                   The number of equilibrium states in the boundary value problem for the nonlinear heat conduction equation may depend on a certain pa​rameter of the problem.
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